# Rate of transient events due to planet-star coalescences

A. V. Popkov (SAI MSU), S. B. Popov (SAI MSU) av.popkov@physics.msu.ru, sergepolar@gmail.com



#### Abstract

Recent studies (e.g. [1]) demonstrate that planet-star coalescences due to tidal effects can result in flare events observable in optical, UV and soft X-ray bands. Energy release can be as high as  $10^{37} - 10^{38}$ erg s<sup>-1</sup> in optics, and up to  $10^{36}$  erg s<sup>-1</sup> — in EUV/X-ray. This is comparable with nova flares. In our study we use population synthesis approach to estimate the rate of planet-star coalescences in a Milky way-like galaxy. We use mass and initial semimajor axis distributions based on population modelling [2], [3]. We derive type and luminosity distributions of events depending on star and planet parameters. We obtain that in a Milky way-like galaxy frequency of optical transients is  $\sim 2.2 \cdot 10^{-2} \text{ yr}^{-1}$ , and EUV/X-ray transients  $\sim 2.4 \cdot 10^{-3} \text{ yr}^{-1}$ . Based on these results we discuss perspectives to detect such events with future instruments.

#### Types of events

Metzger et al. (2012) [1] distinguish three types of planet-star interactions:

1. "Direct impact" — a planet in-spirals through stellar atmosphere, and is destroyed deeper in the interiors. The critical condition is:

$$a_t < R_* + X_t, \tag{1}$$

where  $a_t \approx 2R_*(\bar{\rho}_*/\bar{\rho}_{pl})^{1/3}$  is the Roche limit,  $X_t \approx$  $0.7(M_{pl}/M_*)^{1/3}a_t$  — distance from Lagrange  $L_1$  point to the center of the planet,  $M_*$ ,  $R_*$ ,  $\bar{\rho}_*$  — stellar mass, radius, and mean density,  $M_{pl}$ ,  $R_{pl}$ ,  $\bar{\rho}_{pl}$  — the same three parameters for the planet Typical light curve of such event is demonstrated in Fig. 1. The peak optical luminosity is:

$$L_{peak} \approx 2 \times 10^{37} \text{erg/s} \left(\frac{T_{rec}}{6000K}\right)^{4/3} \left(\frac{M_{pl}}{M_{Jup}}\right)^{2/3}$$
 (2)



**Figure 1:** Schematic representation of a light curve of a direct impact of a Jupiter mass planet with a solar mass star (Fig. 7 from [1]).

2. "Tidal disruption" — a planet is destroyed above the stellar surface, and matter forms an accretion disc. This happens if condition (1) is not fulfilled and  $\bar{\rho}_{pl}/\bar{\rho}_* \gtrsim 1$ . For the peak optical luminosity we use results from [1]:

$$L_{peak} \approx 10^{37} \text{erg/s} \left(\frac{M_{pl}}{M_{Jup}}\right)$$
 (3)

3. Stable mass-transfer from a planet through the inner Lagrange point. This happens if  $\bar{\rho}_{pl}/\bar{\rho}_* \lesssim 1$ . The stellar luminosity is not much increased.

#### Model: orbital tidal evolution







Figure 3: Evolution of orbits for different initial parameters. Left: Stellar mass  $1M_{\odot}$ , planet mass  $1M_{Jup}$ , initial semimajor axis, given in au, is varied. Middle: Stellar mass  $1M_{\odot}$ , planet mass, given in  $1M_{Jup}$ , is varied. Right: Planet mass  $1M_{Jup}$ , stellar mass, given in  $1M_{\odot}$ , is varied. Red lines represent stellar radii taken from evolutionary tracks [5]. Green line corresponds to a synchronous orbit.

In the limit of circular orbits and equilibrium tides the orbital evolution can be described as [4]:

$$\frac{da^{6.5}}{dt} = \text{sign}(a - a_{sync}) \frac{117}{4} \sqrt{\frac{G}{M_*}} \frac{R_*^5 M_{pl}}{Q'_*},\tag{4}$$

where a — semimajor axis,  $a_{sync}$  — synchronous orbit size, G — Newton constant,  $M_*$  and  $R_*$  — stellar mass and radius,  $M_{pl}$  — planet mass,  $Q'_* = 10^{5.5}$  — modified tidal quality factor. In our calculations  $M_*$  and  $M_{pl}$  are not changing during evolution,  $R_*$  are taken from the set of evolutionary tracks PARSEC V2.1s [5].

### Model: population synthesis





Figure 4: Mass — semimajor axis diagram. Top: results of population synthesis modelling by Alibert et al. (2013) [2]. Down: initial distribution used in our model. We consider planets in the range of initial semimajor axes 0.04 < a < 2 au.

- Stellar initial mass function. Kroupa IMF:  $dN/dM_* \sim M_*^{-1.3}$ for  $M_* < 0.5 M_{\odot}$  and  $dN/dM_* \sim M_*^{-2.3}$  for  $M_* > 0.5 M_{\odot}$  [6]. Range of stellar masses: from  $0.09M_{\odot}$  up to  $14M_{\odot}$  (more massive stars have lifetime comparable to the planet formation time scale).
- Planet mass distribution and initial semimajor axis distri**bution.** We fitted the  $M_{pl}$  - a distribution obtained in [2] (see Fig. 4, upper panel) by several normal distributions (Fig. 4, lower panel). The maximum planet mass is  $13M_{Jup}$ . Initial semimajor axes cover the range 0.04 < a < 2 au.
- Planet systems statistics. We calculate evolution of 10<sup>7</sup> single planet systems. Then, each systems gets a statistical weight  $1/n_{pl}$ depending on the stellar mass. Here  $n_{pl}$  is the number of planets in the range 0.04 < a < 2 au. Coefficients  $n_{pl}$  are calculated according to [3]. For the final normalization we use condition  $n_{pl}(M_{\odot}) = 4$ .

$$n_{pl}(M_*) = \begin{cases} \left(\frac{M_*}{M_{\odot}}\right)^{\alpha_D} n_{pl}(M_{\odot}), & M_* < 1.5 M_{\odot} \\ 6.5, & M_* \geqslant 1.5 M_{\odot} \end{cases} \quad (\alpha_D = 1.2)$$

• **History of starformation.** Star formation rate in the galaxy is taken to be  $3M_{\odot}/\text{yr}$  during last 7 Gyrs. In the interval 9-7 Gyrs ago it is taken to be zero. And in the previous epoch —  $10M_{\odot}/\mathrm{yr}$ , see [7].

# Results

Planet-star coalescences of all types (direct impact, tidal disruption, and stable mass transfer) can be also divided in two groups depending on the driving mechanism: tidal dissipation (usually valid for main sequence stars) and planet consumption due to stellar expansion on later stages of evolution.

| Type of coalecence   | Rate, event per year |                     |                     |
|----------------------|----------------------|---------------------|---------------------|
|                      | Total                | MS stars            | Post-MS stars       |
| Direct impact        | 2.16                 | $2.2 \cdot 10^{-2}$ | 2.14                |
| Tidal disruption     | $2.6 \cdot 10^{-3}$  | $2.4 \cdot 10^{-3}$ | $2.1 \cdot 10^{-4}$ |
| Stable mass transfer | $4.2 \cdot 10^{-4}$  | $3.6 \cdot 10^{-4}$ | $5.8 \cdot 10^{-5}$ |

**Table 1:** Galactic rate of different planet interactions with MS and post-MS

Numbers given for post-MS stars are lower bounds as in our calculations we do not consider planets with a > 2 au.

Merger with a planet does not change significantly the luminosity of a giant. Oppositely, direct impact or tidal disruption by a MS star results Figure 2: Rate vs. Peak optical luminosity of events for a Milky way-like in a burst. According to the table above in a Milky way-like galaxy for galaxy. optical transients we have the following rates:

- Direct impacts rate:  $2.2 \cdot 10^{-2}$  per yr
- Tidal disruptions rate:  $2.4 \cdot 10^{-3}$  per yr

Luminosity distribution of optical transients is given in Fig. 2.

Initial stage of a massive planet coalescence with a star (weeks-month prior to the merger) is characterized by quasi-periodically varying EUV/X-ray emission at  $E \sim 100$  eV and  $L_{EUV/X} \lesssim 10^{36}$  erg s<sup>-1</sup>.

• Rate of EUV/X transients in a Milky way-like galaxy:  $\sim 2 \cdot 10^{-3} \text{ per yr}$ 



Most probably, interstellar absorption can exclude detection of significant fraction of events in our Galaxy. Thus, it is necessary to perform surveys of near-by galaxies with large telescopes. In the near future such a program might be realized with the LSST.

Maximum luminosity according to Fig. 2 is  $\sim 10^{38}$  erg s<sup>-1</sup>, which corresponds to the absolute magnitude  $M_{max} = -6^m$ . Then for a source at 1 Mpc we expect visual magnitude  $+19^m$ , and from 10 Mpc  $-+24^m$ . According to [1] effective temperature for an optical transient is 5000-7000 K. This corresponds to g band of LSST. Limiting magnitude for a point source in g band is expected to be  $+24.8^{m}$  [9] (due to a galactic background the realistic estimate for a planet-star merger must correspond to a somewhat brighter sources). Thus, LSST can discover such events at distances about few Mpc.

# Discussion

It is possible to make a simple estimate for merger rate with MS stars, which is in correspondence with the obtained results. Let the number of MS stars in the galaxy be  $N_* = 10^{11.5}$ . About 10% among them belong to F, G, K classes. About 1% of F, G, K stars have hot jupiters — massive planets with orbital periods  $\sim$ 1-10 days [8] (this planets

make the main contribution to the statistics of observable transients). Then there are about  $10^{8.5}$  stars with hot jupiters. If we assume that all planets with periods < 3 days merge during 10-12 Gyrs, and assume the Öpik distribution for initial orbits  $f(a) \sim a^{-1}$ , we obtain  $\sim 10^8$  in the life time of a galaxy. If the rate of coalescences is flat, then the present day rate is  $\sim 0.01$  per yr.

Our numerical results have strong dependence on two model parame-

- 1. Initial semimajor axis distribution of massive planets. Position of the internal boundary is very important. If it is shifted towards the star — then the rate of coalescences is significantly enhanced. Also we have to note, that the shape of the distribution we used was obtained for solar mass stars. Variations of the  $M_{pl}$  - a distribution (especially for massive planets) for different  $M_*$  might modify the results.
- 2. <u>Tidal evolution</u>. Equilibrium approximation used by us is a very rough one for star-planet systems. Also, the value of  $Q'_*$  for different stellar masses and evolutionary stages is not well-known. Different studies show that this parameter can cover wide range of values, and it might be accurately taken in account for robust estimates of star-planet merger rate.

# References

- [1] Metzger B. D. et al., 2012, MNRAS, 425, 2778.
- [2] Alibert Y. et al, 2013, A&A, 558, A109.
- [3] Alibert Y., Mordasini C., Benz, W., 2011, A&A, 526, A63.
- [4] Jackson B., Greenberg R., Barnes R., 2008, ApJ, 678, 1396. [5] http://people.sissa.it/~sbressan/parsec.html
- [6] Kroupa P., 2001, MNRAS, 322, 231.
- [7] Haywood M. et al., 2016, A&A, 589, A66.
- [8] Wright J. T. et al., 2012, ApJ, 753, 160.

[9] http://smtn-002.lsst.io/en/latest/