

Gaseous debris discs around white dwarfs

Christopher J. Manser

Collaborators: Boris Gänsicke, Tom Marsh, Detlev Koester, Dimitri Veras, Nicola Pietro Gentile Fusillo

Saturn to scale

Artists impression of SDSS J1228+1040 by Mark Garlick. Image of Saturn from NASA's Cassini mission, NASA image saturn_malmerCassini_5m.jpg

Talk Outline

- **One -** The gaseous debris disc around SDSS J1228+1040
- Few Common variability of gaseous debris discs
- Many Frequency of gaseous debris discs around white dwarfs

Remnant Planetary Systems

Gänsicke et. al. 2012, MNRAS, 424, 333

Remnant Planetary Systems

Brinkworth et. al. 2009, ApJ, 696, 1402

Gänsicke et. al. 2012, MNRAS, 424, 333

Remnant Planetary Systems

Brinkworth et. al. 2009, ApJ, 696, 1402

Gänsicke et. al. 2012, MNRAS, 424, 333

The gaseous component of the debris disc

Accretion disc in a binary

Accretion disc in a binary

The gaseous component of the debris disc

10 out of 18

2011-01

New observations in March and May

A Whole New Map

Some more comparing

New (20 epochs)

Old (18 epochs)

Spiral?

Even newer data!

Reached half way?

Coadded X-Shooter spectrum

April 2010 Hubble Spectrum

March 2016 Hubble Spectrum

Comparing the two...

Circumstellar gas

Circumstellar gas

Other variable gas discs SDSS J1228+1040

Morphologically variable SDSS J0845+2257 SDSS J1228+1040

Normalised Flux

Morphologically variable SDSS J0845+2257 SDSS J1228+1040 SDSS J1043+0855

Variable strength

SDSS J1617+1620

Variable strengthSDSS J1617+1620SDSS J1228+1040

Variability

Name	Type	Features
SDSS J0738+1835	DB	е
SDSS J0845+2257	DB	e, v
${ m SDSS} { m J0959-0200}$	DA	e, v
SDSS J1043+0855	DA	e, v
$WD \ 1144 + 0529$	DA	е
SDSS J1228+1040	DA	e, a, v
${ m HE}1349{-}2305$	DBA	е
SDSS J1617+1620	DA	e, v

e - Gaseous emission

a - Gaseous absorption

v - Spectroscopic or photometric Variability

Variability

Metal pollution Koester et. al. 2014

25 - 50 %

Metal pollution Koester et. al. 2014

25 - 50 %

Dusty disc Farihi et al. 2009 Rocchetto et al. 2015 1 - 3 %

Metal pollution Koester et. al. 2014

25 - 50 %

Dusty disc Farihi et al. 2009 Rocchetto et al. 2015

1 - 3 %

Gaseous component

??? %

The sample

Figure 2. Colour–colour diagrams illustrating the location of the 27 639 DR7 spectroscopic objects that we used as training sample for our selection method. DA white dwarfs, non-DA white dwarfs, NLHS and quasars are shown as blue, yellow, red and green dots, respectively. The colour cuts that define our initial broad selection from Table 2 are overlaid as red lines. Objects outside this selection were not classified and are therefore plotted as grey dots.

Gentile Fusillo et. al. 2015, MNRAS, 448, 2260

The sample

The frequency of gaseous discs

9079 single white dwarfs

The frequency of gaseous discs

9079 single white dwarfs

6 Gasesous components

The frequency of gaseous discs

9079 single white dwarfs

6 Gasesous components

Frequency of observable gaseous debris discs at 0.07+0.03 % white dwarfs

Metal pollution Koester et. al. 2014

25 - 50 %

Dusty disc Farihi et al. 2009 Rocchetto et al. 2015

1 - 3 %

Gaseous component

0.07 %

Metal pollution Koester et. al. 2014

25 - 50 %

Dusty disc Farihi et al. 2009 Rocchetto et al. 2015

1 - 3 %

Gaseous component

0.07 %

Debris discs with a gaseous component

2 - 10 %

Summary

- SDSS J1228+1040 is well studied, but still many unanswered questions.
- An observable gaseous component appears to be linked with variability
- Determined the frequency of a gaseous component to a debris disc at a white dwarf.

Summary

- SDSS J1228+1040 is well studied, but still many unanswered questions.
- An observable gaseous component appears to be linked with variability
- Determined the frequency of a gaseous component to a debris disc at a white dwarf.

Thanks for listening!

C.Manser@Warwick.ac.uk