

Outline

(a) Exocomets: An Overview

(b) Our Survey

(c) Main Sequence-White Dwarf connection

- Detectable when the coma of a comet passes in front of a star
- A doppler-shifted absorption appears in volatile element lines (Ca II, NaI, Mg II...)

Beust et al. (1998)

- First detection of an exocometary-like event by Ferlet et al. (1987) in β -Pictoris
- Absorptions vary in depth and velocity as the exocometary event evolves

Ferlet et al. (1987)

Credit: NASA/FUSE, Lynette Cook

Credit: NASA, ESA, A. Feild and G. Bacon

- Up to date, ~ 15 stars are known to have exocomets
- All of them are A-Type stars
- •β-Pic is the best studied exocomet-host star

NASA and ESA

Bonnefoy et al. (2011)

Our Survey

We selected stars with different criteria:

• Previously reported FEBs (Falling Evaporating Bodies)

Kiefer et al. (2014)

We selected stars with different criteria:

• Previously detected gas in debris discs: FIR to mm

Kospal et al. (2013)

We selected stars with different criteria:

• Edge on debris discs: favourable orientation

We selected stars with different criteria:

• Presence of H/K excesses: related to hot dust

Labadie et al. (2014)

We selected stars with different criteria:

• Young discs: ongoing interactions between planetesimals

Credit: NASA/FUSE, Lynette Cook

We selected stars with different criteria:

- Previously reported FEBs
- Previously detected gas: FIR and radio
- Edge on debris discs: favouring the vision line
- Presence of H/K excesses: related to hot dust
- Young discs: high levels of solids interactions

~ 100 stars

Chromospheric emission hinders exocometary detections

Our Survey: Data

We observed ~100 stars obtaining over 1200 high resolution spectra

24 Nights655 spectra

6 Nights 207 spectra

8 Nights 244 spectra

Service mode 64 spectra

Our Survey: Data

We observed ~100 stars obtaining over 1200 high resolution spectra

24 Nights655 spectra

6 Nights 207 spectra

Observations Ongoing

8 Nights 244 spectra

Service mode 64 spectra

Our Survey: Time variability

Constructing a time series of spectra per star allows us to detect variability

Our Survey: Results

The most important result so far is the exocometary events detected in Φ Leo

It's only second to β -Pic in amount of events detected, with a wide range of time variations.

(Eiroa, Rebollido et al. 2016)

Our Survey: Results

- Older than β -Pic (~20Myr against ~500-900 Myr)
- High frequency of events in different timescales
- Is there a planet?

(Eiroa, Rebollido et al. 2016)

Main Sequence-White Dwarf connection

White Dwarfs: Stellar Evolution

The fate of a star depends on its mass (size not to scale)

Credit: NASA/CXC/M.Weiss

White Dwarfs: Stellar Evolution

The fate of a star depends on its mass (size not to scale)

Credit: NASA/CXC/M.Weiss

White Dwarfs: Pollution

- Small traces of metals are found where they can only be supplied by an external source
- Koester et al. (2014) find 50% of their sample show traces of pollution

Credit: CfA/Mark A. Garlick

White Dwarfs: Pollution

Koester et al. 2014

White Dwarfs: Pollution

Koester et al. 2014

Raul Maldonado's talk, Tuesday 17:00

Summary

Summary

- Strong observational bias in our sample. Evidence for accretion in A-type stars
- Most of the polluted WD have progenitors of ${\sim}2{\rm M}_{\rm Sun}$

Is there a connection?

 $MS \rightarrow WD$

Our accreting stars could represent early evolutionary stages of polluted White Dwarfs